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1 Introduction

Chebyshev polynomials of the first kind are defined by the recurrence relation:

)0 (G) = 1, )1 (G) = G, )=+1 (G) = 2G)= (G) � )=�1 (G), (1)

and have the explicit expression

)= (G) =
1
2

⇣
G �

p
G

2 � 1
⌘=

+ 1
2

⇣
G +

p
G

2 � 1
⌘=

, (2)

for G � 1. The most well-known property of Chebyshev polynomials is that they express

cos(=\) in terms of cos(\) via the equation cos(=\) = )= (cos \).

Chebyshev polynomials are a special case of Jacobi polynomials (also known as

hypergeometric polynomials), a class of classical orthogonal polynomials. Chebyshev

was the first mathematician to have noticed them in 1854, but their importance was

not noticed until Hans Hahn rediscovered them and named them after Chebyshev. The
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polynomials )= (G) are orthogonal with respect to the inner product

h 5 , 6i = 2
c

π 1

�1
5 (G)6(G) 3Gp

1 � G
2
.

In other words, h)<,)=i = 0 for all positive integers < < =, and h)=,)=i = 1 for all

integers = � 0.

By replacing = with U in Equation (2), one can generalize Chebyshev polynomials

to functions )U : [�1,1) ! [0,1) for all values of U 2 R. Equivalently, )U is defined

by

)U

✓
G + G

�1

2

◆
=
G
U + G

�U

2
, (3)

for all G > 0.

From Equation (1), we can see by induction that )=+1 (G) � )= (G) for all G � 1.

More generally, if U > V � 0, then )U (G) > )V (G) for all G > 1. To see this, by virtue

of Equation 3, we need to show that the function U 7! G
U + G

�U is a strictly increasing

function of U > 0 for a fixed positive G < 1. The claim then follows from

3

3U

(GU + G
�U) = (GU � G

�U) ln G > 0,

which holds for all positive G < 1 and U > 0. Since )�U = )U, we have proven the

following lemma.

Lemma 1. If |U | � |V |, then )U (G) � )V (G) for all G � 1. The equality occurs if and

only if G = 1 or |U | = |V |.

Next, we prove an inequality that gives an upper bound for products of Chebyshev

polynomials in terms of another Chebyshev polynomial.

Theorem 1. If 2U2 � V
2 + W

2, then

()U (G))2 � )V (G))W (G),
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for all G � 1. The equality occurs if and only if G = 1 or |U | = |V | = |W |.

Proof. We let

⌧ (G) = (GU + G
�U)2 � (GV + G

�V) (GW + G
�W),

and � (G) = G⌧
0(G). Then, for all G > 0, we have

G�
0(G) = 4U2 (G2U + G

�2U) � (V + W)2 (GV+W + G
�V�W) � (V � W)2 (GV�W + G

�V+W)

� 4U2 (G2U + G
�2U) � (V + W)2 (G2U + G

�2U) � (V � W)2 (G2U + G
�2U)

� 2(2U2 � V
2 � W

2) (G2U + G
�2U) � 0,

since |2U | � |V + W | and |2U | � |V � W |. It follows that � 0(G) � 0 for all G > 0. Since

� (1) = 0, we must have � (G) � 0 for all G � 1 and � (G)  0 for all 0 < G  1.

Therefore, ⌧ 0(G) � 0 for all G � 1 and ⌧
0(G)  0 for all 0 < G  1. Since ⌧ (1) = 0,

it follows that ⌧ (G) � 0 for all G > 0. The equality occurs if and only if G = 1 or

|2U | = |V + W | or |2U | = |V � W |. Therefore, the equality occurs if and only if G = 1 or

|U | = |V | = |W |. ⇤

A function 5 (G) is said to be concave on an interval [0, 1], if

5 (CG1 + (1 � C)G2) � C 5 (G1) + (1 � C) 5 (G2),

for all G1, G2 2 [0, 1]. A function 5 (G) is said to be midpoint-concave on an interval

[0, 1], if

5

⇣
G1 + G2

2

⌘
� 5 (G1) + 5 (G2)

2
,

for all G1, G2 2 [0, 1]. It follows from Theorem 1 that the function 5G : R! R defined

by

5G (U) = ln)pU (G),

is a midpoint-concave function of U for a fixed value of G � 1. A theorem of Jensen
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states that if a function is continuous and midpoint-concave, then it is concave [5, 6]. It

follows that 5G is a concave function. The next theorem is a generalization of Theorem

1.

Theorem 2. Let C8 , 1  8  =, be nonnegative real numbers such that
Õ=

8=1 C8 = 1. If

U
2 � Õ=

8=1 C8U
2
8 , then we have

)U (G) �
=÷
8=1

()U8
(G))C8 , (4)

for all G � 1, where the equality occurs if and only if G = 1 or |U | = |U8 | for all 1  8  =

with C8 < 0. Conversely, if the inequality (4) holds for all G � 1, then U
2 � Õ=

8=1 C8U
2
8 .

Proof. Since 5G is concave, by Jensen’s inequality [4], we have

5G

 
=’
8=1

C8U8

!
�

=’
8=1

C8 5G (U8),

which implies the inequality (4). The converse is left to the reader as an exercise. ⇤

2 A related cyclic homogeneous inequality

In the next theorem, we derive a cyclic homogeneous inequality on two variables based

on Lemma 1.

Theorem 3. Let 0, 1 � 0 and 2 = (0 + 1 + 1)/2. If (2 � 1)2  201, then

(G2 + H
2)2 � (G + H) (G0H1 + H

0
G
1), (5)

for all G1, G2 � 0, and the equality occurs if and only if G = H or {0, 1} = {0, 1}.

Proof. With U = 2/2, V = 1/2, and W = (0 � 1)/2, Lemma 1 implies that

((G/H)2/2 + (G/H)�2/2)2 � ((G/H)1/2 + (G/H)�1/2) ((G/H) (0�1)/2 + (G/H) (1�0)/2),
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for all G � 1, if 2U2 � V
2 + W

2 or equivalently (2 � 1)2  201. The equality occurs

if and only if G/H = 1 or |U | = |V | = |W |, or equivalently, if and only if G = H or

{0, 1} = {0, 1}. ⇤

To generalize the inequality (5), we consider the following homogeneous cyclic

inequality  
=’
8=1

G
2
8

!2

�
=’
8=1

G8

=’
8=1

G
0
8 G

1
8+1, (6)

where 2 = (0+1+1)/2 and 0, 1, G1, . . . , G= � 0. One asks that under what conditions on

0, 1, 2, the inequality (6) holds for all G1, . . . , G= � 0. It is straightforward to see that if

0 + 1 = 1, then the inequality (6)for all G1, . . . , G= � 0, follows from the Rearrangement

inequality [2, Ch. 6]. However, if 0 + 1 < 1, then the inequality (6) fails to hold if = is

large enough [3]. In other words, the validity of the inequality (6) for all G1, . . . , G= � 0

for fixed values of 0, 1 � 0 with 0+1 < 1 depends on =. Conversely, given a fixed value

of =, the inequality (6) holds for a specific subset of values (0, 1) 2 [0,1) ⇥ [0,1).

In the following theorem, we derive a su�cient condition for the inequality (6) in

the case of = = 3.

Theorem 4. If 20 + 1 � 1 � (0 � 1)/2 � �1/2, then

(G2 + H
2 + I

2)2 � (G + H + I) (G0H1 + H
0
I
1 + I

0
G
1),

for all G, H, I � 0. The equality occurs if and only if G = H = I.

Proof. Without loss of generality, we assume that 0 � 1. If 1 � 0 � 1, then the claim

follows from [3, Prop. 2.1]. Thus, suppose that 0 � 1 � 1 � 0. Let G, H, I � 0. By

Jensen’s inequality [2, Ch. 7]:

0 + 1 � 1

22
G

22 + 1

2

G
2
H
2 � G

0+1
H
1
,

1

22
G

22 + 21 � 0 + 1
22

H
22 + 0 � 1

2

G
2
H
2 � G

0
H
1+1

,
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0 � 1 � 1
22

G
22 + 1

2

G
2
I
2 + 1

2

G
2
H
2 � G

0
H
1
I.

Adding these inequalities yields

20 � 1

22
G

22 + 21 � 0 + 1
22

H
22 + 0 + 1

2

G
2
H
2 + 1

2

G
2
I
2 � (G + H + I)G0H1 . (7)

Similarly

20 � 1

22
H

22 + 21 � 0 + 1
22

I
22 + 0 + 1

2

H
2
I
2 + 1

2

G
2
H
2 � (G + H + I)H0I1 , (8)

20 � 1

22
I

22 + 21 � 0 + 1
22

G
22 + 0 + 1

2

G
2
I
2 + 1

2

H
2
I
2 � (G + H + I)I0G1 . (9)

The claim follows from adding inequalities (7)-(9). ⇤

3 The Case of = = 8

A particular case of interest is when 0 = 1 = 1 and = = 8. We first need a lemma.

Lemma 2. Let G1, . . . , G8 be nonnegative real numbers. Then

8’
8=1

G
3
8 � 1

8

 
8’
8=1

G8

!  
8’
8=1

G
2
8

!
.

Proof. By the Power Mean Inequality [1, Ch. III], one has

 
1
8

8’
8=1

G
3
8

!1/3

� 1
8

8’
8=1

G8 and

 
1
8

8’
8=1

G
3
8

!1/3

�
 
1
8

8’
8=1

G
2
8

!1/2

.

The claim follows from these inequalities. ⇤

Theorem 5. Let G1, . . . , G= be nonnegative real numbers. If =  8, then

 
=’
8=1

G
3
8

!2

�
 

=’
8=1

G
2
8

!  
=’
8=1

G
2
8 G

2
8+1

!
, (10)
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where the equality occurs if and only if G1 = G2 = · · · = G=. Moreover, the inequality

(10) does not hold in general if = > 8.

Proof. Equivalently, we show that the maximum value of the function 5 : U ! R

defined by

5 (G1, . . . , G8) =
Õ8

8=1 G
4
8 G

4
8+1⇣Õ8

8=1 G
6
8

⌘2
,

is 1, where

U =

(
(G1, . . . , G8) :

8’
8=1

G
4
8 = 1

)
.

By the Power Mean Inequality [1, Ch. III], one has (Õ8
8=1 G

6
8 /8)1/6 � (Õ8

8=1 G
4
8 /8)1/4.

Therefore,
Õ8

8=1 G
6
8 �

p
1/8 and so the function 5 is bounded from above on U, hence

it attains a positive absolute maximum on the compact set U, say at (G1, . . . , G8).

Without loss of generality, we can assume G1, . . . , G8 � 0. By the method of Lagrange

multipliers, there exists a real number _ such that

1
�

4

⇣
4G3

8 (G4
8�1 + G

4
8+1)�2 � 2�⌫(6G5

8 )
⌘
= _(4G3

8 ), 88 = 1, . . . , 8, (11)

where � = G
6
1 + · · · + G

6
8 and ⌫ = G

4
1G

4
2 + · · · + G

4
8G

4
1. Therefore,

G
4
8 (G4

8�1 + G
4
8+1)� � 3⌫G6

8 = _�
3
G

4
8 , 81  8  8. (12)

By summing the equations (22), we have _ = �⌫/�2. We need to show that �2 � ⌫.

On the contrary, suppose ⌫ > �
2, and we will derive a contradiction.

Equations (21) imply that, if G8 < 0, then

3⌫G2
8 = �(G4

8�1 + G
4
8+1) + �⌫. (13)

First, we show that G8 < 0 for all 8 2 {1, . . . , 8}. On the contrary, and without loss
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of generality, suppose G8 = 0 and G7 > 0. Given n 2 (0, G7), let

X = X(n) = (G4
7 � (G7 � n)4)1/4

,

such that (G7 � n)4 + X
4 = G

4
7, and so X

3
X
0 = (G7 � n)3. We define

� (n) = 5 (G1, . . . , G6, G7 � n , X) = ⌫n

�
2
n

,

and compute

�
0(n) = 4(G7 � n)3

�
4
n

⇣
�

2
n (�G4

6 � X
4 + (G7 � n)4 + G

4
1) + 3�n ⌫n ((G7 � n)2 � X

2)
⌘
.

It follows that

lim
n!0+

�
0(n) =

G
3
7

�
4
(�2 (+G4

7 + G
4
1) � �

2
G

2
6 + 3�⌫G2

7)

=
G

3
7

�
4
(�2 (G4

1 + G
4
7) + �

2
⌫) > 0, (14)

where we have used equation (13) with 8 = 7 to obtain ��2
G

2
6 + 3�⌫G2

7 = �
2
⌫. The

inequality (14) is a contradiction with the assumption that � (n) attains a maximum as

n ! 0+. We conclude that G8 > 0 for all 8 = 1, . . . , 8. In particular, equations (13) hold

for all 8 = 1, . . . , 8. In the rest of the proof, we let H8 = G
2
8 . Hence, with ⇠ = ⌫/�, the

equations (13) turn into

3H8⇠ = H
2
8�1 + H

2
8+1 + ⌫, 81  8  8. (15)

It follows that

3(H8 + H8+4)⇠ = 2⌫ + H
2
8�1 + H

2
8+1 + H

2
8+3 + H

2
8+5,

3(H8+2 + H8+6)⇠ = 2⌫ + H
2
8+1 + H

2
8+3 + H

2
8+5 + H

2
8+7,
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which imply that H 9 + H 9+4 = H 9+2 + H 9+6 for all 9 , since H8�1 = H8+7 as the indices are

computed modulo 8. Therefore, there exist nonnegative real numbers A, B such that

H1 + H5 = H3 + H7 = A, (16)

H2 + H6 = H4 + H8 = B. (17)

Equations (15) imply that

3(H1 � H3)⇠ = H
2
8 � H

2
4

3(H2 � H4)⇠ = H
2
1 � H

2
5

3(H3 � H5)⇠ = H
2
2 � H

2
6

3(H4 � H6)⇠ = H
2
3 � H

2
7.

Let H̄8 = H8 � A/2 if 8 is odd, and H̄8 = H8 � B/2 if 8 is even. It follows that H̄8 + H̄8+4 = 0

for all 8. Moreover, for 8 odd, we have

3⇠ ( H̄8 � H̄8+4) = 3⇠ (H8 � H8+4) = H
2
8�1 � H

2
8+1 + H

2
8+3 � H

2
8+5

= (H8�1 � H8+3) (H8�1 + H8+3) + (H8+1 � H8+5) (H8+1 + H8+5)

= 2H̄8�1B + 2H̄8+1B,

which implies that H̄8 = ( H̄8�1+H̄8+1)B/(3⇠) for odd 8. Similarly, H̄8 = ( H̄8�1+H̄8+1)A/(3⇠)

for even 8. It then follows that

H̄8 =
B

3⇠
( H̄8�1 + H̄8+1) =

AB

9⇠2
( H̄8�2 + H̄8 + H̄8 + H̄8+2) =

2AB
9⇠2

H̄8 ,

for odd 8, and similarly for even 8. We claim that 9⇠2 < 2AB. On the contrary, suppose
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9⇠2 = 2AB, and so, since ⇠ = ⌫/� > �, we must have

6
p

2� < 6
p

2⇠  4
p
AB  2(A + B) 

8’
8=1

H8 . (18)

However, by Lemma 2, we have 8� � Õ8
8=1 H8 which contradicts (18), since 6

p
2 > 8.

Thus 9⇠2 < 2AB, and so H̄8 = 0 for all 8. Therefore, H1 = H3 = H5 = H7 = A/2, and

H2 = H4 = H6 = H8 = B/2. So we have A2 + B
2 = 4((A/2)2 + (B/2)2) = Õ8

8=1 H
2
8 = 1 and

5 (G1, . . . , G8) =
8(A/2)2 (B/2)2

(4(A/2)3 + 4(B/2)3)2
=

2A2
B

2

(A3 + B
3)2

 1, (19)

since it follows from A
2 + B

2 = 1 that

A
3 + B

3 � 2
✓
A

2 + B
2

2

◆3/2
� 2

✓
1
2

◆3/2
� A

2 + B
2

p
2

�
p

2AB.

The equality occurs in (19) if and only if A = B if and only if H1 = H2 = · · · = H8, hence

the equality in (10) occurs if and only if G1 = G2 = · · · = G8. ⇤

4 Variable Fractional Powers

It is di�cult to determine when Equation (6) is satisfied for specific 0,1,=. Exploring this

inequality with variable fractional powers brings further bounds, bounds that include

the AM-GM inequality.

Theorem 6. Let G1, . . . , G= be nonnegative real numbers. If U � =
2
p
=�1+= , then

=’
8=1

G8 � =

=÷
G=1

G

U

=
+ (1�U)G

8Õ
=

8=1 G
8

8 , (20)

Proof. Equivalently, we show that the maximum value of the function 5 : U ! R

10



defined by

5 (G1, . . . , G=) =
=’

G=1

(U
=

+ (1 � U)G8) ln G8 ,

is ln 1
= , where

U =

(
(G1, . . . , G=) :

=’
8=1

G8 = 1

)
.

Without loss of generality, we can assume G1, . . . , G= � 0. By the method of Lagrange

multipliers, there exists a real number _ such that

U
= + (1 � U)G8

G8
+ (1 � U) ln G8 = _

=’
8=1

G8 , 88 = 1, . . . , =, (21)

where
=Õ
8=1

G8 . Therefore,

U

=G8
+ (1 � U) + (1 � U) ln G8 = _, 81  8  =. (22)

There only exists a maximum or a minimum for _ when G = U
(1�U)= , so there exists at

most 2 sets of value _, which reduces Equation (6) to 2 variables. First we reexpress

Equation (6) as 2 variables.

:G + (= � :)H
=

� G
: ( U

=
+(1�U) G

:G+(=�:)H )
H
: ( U

=
+(1�U) H

:G+(=�:)H ) (23)

Then homogenizing with :
= = V, we show

ln (VG + 1 � V) �
✓
UV + V(1 � U)G

VG + 1 � V

◆
ln G,

for all G � 1.

Since there is an equality at G = 1, we must compute that the derivative of the LHS

is greater than the derivative of the RHS.

11



V

VG + 1 � V

� V(1 � U) (1 � V)
(VG + 1 � V)2

ln G + UV

G

+ (1 � U)V
VG + 1 � V

U

1 � U

� G ln G
(G � 1) (VG + 1 � V)

Consider 6V (G) = G ln G
(G�1) (VG+1�V) . Notice that when V increases, 6 decreases when

V � 1
: . We must prove that the inequality holds at V = 1

= , which would then show the

inequality holds for all : � 1

=G ln G
(G � 1) (G + = � 1)  U

1 � U

(24)

The maximum of the LHS can be found by taking a derivative.

(1 + ln G) (G2 + (= � 2)G � = + 1) � (2G2 + (= � 2)G) ln G = 0

G
2 + (= � 2)G � = + 1 � (G2 + = � 1) ln G = 0

ln G =
(G � 1) (G + = � 1)

G
2 + = � 1

We can substitute ln G into Equation (24):

=

G + =�1
G

 U

1 � U

(25)

In order to minimize the denominator to maximize the LHS, we set G =
p
= � 1, which

satisfies the bounds for U. ⇤
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5 Conclusion

By [3, Prop. 2.2], if the inequality (10) holds in general for a value of =, then it holds

in general for all smaller values of =. A counterexample for = = 9 was also provided in

[3, §1]. Therefore, the inequality (10) holds for all =  8.

It is generally di�cult to determine if the inequality (6) holds for specific values of

=, 0, 1. However, a necessary condition is that

(0 + 1 � 1)2  801 sin2 (c/=).

In particular, when = = 2, by Theorem 3, the inequality 6 holds with = = 2 in gneral

if and only if (0+1�1)2  801. For = = 3, in Theorem 4, we gave su�cient conditions

on 0, 1 so that the inequality 6 holds. It would be interesting to weaken these conditions

or ideally determine exactly for what values of 0, 1 the inequality (6) holds with = = 3.

Special cases of the inequality (6) can be verified using computer software. For

example, it can be shown that the inequality (6) holds for = = 3, 0 = 7/2 and 1 = 1/2.

In other words, one has

(G5 + H
5 + I

5)2 � (G2 + H
2 + I

2) (G7
H + H

7
I + I

7
G),

for all G, H, , I � 0. However, using a computer software seems unfeasible in general.

The inequality (20) strengthens the AM-GM inequality, which can be shown when

= = 2. Further explorations of this inequality can show other inequalities which can

strengthen many of the base inequalities.
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