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Project OVERVIEW

In recent years, population models that utilize continuous spatial
frameworks have increasingly found use in lieu of traditional models that consider
populations to be well-mixed. This is because the inclusion of spatiality can
significantly alter simulation outcomes when modeling many population genetics
processes, such as the evolution and spread of beneficial alleles. A fundamental
requirement of spatial models is the determination of which individuals can
interact with one another, and how strongly they interact. These calculations are
used to regulate the population to its local capacity. However, these interactions
represent a substantial computational workload, which can lead to prohibitively
long runtimes for large populations. Here, we present a novel modeling method in
which the resources available to a population are abstractly represented as an
additional layer of the simulation. Instead of interacting directly with one another,
individuals interact indirectly via this resource layer. We find that this method
closely approximates interactions used in other spatial models, yet can increase
the speed of the model by as much as an order of magnitude, allowing for the
simulation of much larger populations. Additionally, structuring the model in this
manner provides other desirable characteristics, including more realistic spatial
dynamics near the edge of the simulated area, as well as an efficient route for
implementing more complex heterogeneous landscapes and other features.



INTRODUCTION

Traditional population genetics models have generally considered groups of
organisms to exist under the assumption of panmixia' . Panmictic population are
considered to be fully intermixed, with no spatial structure and with no barriers to
prevent any given individual from selecting any possible candidate as a mate. This
abstraction is likely suitable for modeling laboratory populations, populations on
small islands, and some others*®. However, there are many other contexts in which
the natural world cannot be accurately reflected without some representation of

spatiality®®’.

One option is to break up a population into an array or “lattice” of
subpopulations linked by migration>®*'°. Each subpopulation is treated as a
separate panmictic cell, while migration between cells allows for spatial variation.
Increasingly, however, it has become apparent that the most accurate way to model
populations that exist in real continuous geographical landscapes is to use
simulated continuous landscapes®®®. Models structured in this way avoid artifacts
produced by discretization in linked panmictic populations®. More importantly,
there are a number of biological processes that play out very differently in
continuous spatial models. One example is the evolution of beneficial mutations,
which have been found to reach fixation at significantly different rates in

continuous spatial models than predicted by non-spatial models”"*2.

While fully continuous spatial models are the best or only choice in many
contexts, they are not without their pitfalls. Chief among these is the significant
computational cost of spatial calculations. At each point in time throughout the
simulation, it must be determined which individuals can mate with one another
and which are in competition. Competition is represented by assigning fecundity
or mortality as a function of local density in lieu of the global population regulation
of a panmictic model®. To accomplish these tasks, each individual must ascertain
whether or not it is interacting with each other individual; if two individuals
interact, the strength of the interaction, usually a function of the distance between
the individuals, must be computed. Superficially, it might appear that this process
would require on the order of n* operations for a population of  individuals, but



the use of a space-partitioning data structure to store individual positions reduces
the workload substantially, with the magnitude of the reduction inversely
proportional to the density of the population'*. Nonetheless, spatial calculations
can occupy the majority of the runtime of such models.

Additional problems crop up near the boundaries of spatial models. If
individuals are distributed approximately uniformly, as might be considered
appropriate, individuals at the edges of the simulated area tend to interact with
only half as many neighbors. Since survival is dependent on local density, this can
result in the edge areas becoming overpopulated, with knock-on effects on density
in the interior of the model. Such edge effects can be corrected by calculating the
weight of the spatial interaction that has been cut off by the edge of the model and
scaling competition accordingly'®. However, this correction involves solving, or at
least approximating, a double integral in polar coordinates for each individual
whose interaction area falls partially outside the modeled area. This represents an
additional computational burden, especially when using more complex interaction
functions. The difficulty of this correction is substantially exacerbated if modeling
an area with a naturally shaped border (e.g., an island’s coastline) rather than a

square or rectangular area.

In this study, we introduce a new continuous spatial modeling paradigm in
which interactions can be evaluated with significantly greater speed, and which
does not exhibit edge effects for which corrections need be applied. This is
accomplished by directly simulating the resources available to the focal species.
These resources are abstractly modeled via “resource node” entities which are
uniformly distributed across the landscape at the center-point coordinates of a
hexagonal tiling of the modeled area. Competing individuals collect resources from
their foraging area which encompasses several such nodes, reducing the resources
available to other individuals. In this way, local density is regulated by extrinsic
resource availability, rather than local density being self-regulating. Thus, the
spatial interactions used to model competition are interactions between
individuals and resource nodes, removing the need to evaluate spatial interactions

as between individuals of the focal species. Depending on the density of



individuals and the desired granularity of the tiling of resource nodes, one
resource node might support as many as a dozen individuals, meaning evaluating
interactions between individuals and nodes can be vastly less computationally
intensive. Edge-behavior in a resource-explicit model is also preferable to that in a
standard spatial model. Individuals at the edges of the modeled area have fewer
local competitors, but they are also near fewer resource nodes (as there are neither
resource nodes nor competitors outside of the modeled area). Consequently, local
carrying capacity is the same near edge areas as it is in the interior of the model

without the need for any time-consuming corrections.

The tiling of resource nodes results in minor spatial artifacts in interaction
strength. However, quantitative assessments reveal that these artifacts are minor,
and that the resource-explicit interaction has a high degree of similarity with
standard spatial interactions. Performance comparisons reveal that models using
this technique can run an order of magnitude faster than standard spatial models.
Given this degree of runtime improvement, resource-explicit models could be
used to simulate populations that were previously impractically large to simulate
in full in spatial models. Additionally, these models are highly flexible, offering an
elegant implementation path for a number of desirable features, including more
realistic, heterogenous landscapes, irregular model boundaries (i.e., coastlines or
otherwise impassable terrain), competition between multiple species, and other
features.

METHODS

The population models assessed in this manuscript are structured as
continuous spatial models with overlapping generations in which competition
impacts mortality (the resource-explicit approach can also be applied to models
with non-overlapping generations and in which competition impacts fecundity; an
example model structured in this way is available on the GitHub repository:
https://github.com/MesserLab/ResourceExplicitModels). The models are written in



the SLiM individual-based forward-in-time population modeling framework

(version 4.1; the models are not compatible with previous versions)*®.

The models share a common core, except as noted otherwise. An
approximately square area with reprising boundaries was simulated, with the
population starting at capacity (the area is slightly rectangular — see the
Supplemental Methods regarding resource node placement for an explanation).
The modeled area was specified in multiples of a basic “unit area,” defined as the
foraging area of an individual of the focal species. Capacity was calculated by
multiplying the modeled area by a density parameter specifying the number of
individuals supported by one unit area.

In each time-step, or “tick”, of the model, the focal species first reproduces,
and then experiences competition dependent mortality. Even in the
resource-explicit models (with one exception), females search for mates using a
standard spatial interaction, since mate-search interactions are generally less of a
runtime burden than competition interactions because of the sex-segregated
nature of the mate-search interaction. A fixed-strength interaction function is used
for this purpose, resulting in an equal probability of picking any male within range.
Each female who reproduces generates a number of offspring according to a
Poisson distribution with an average of 8 (except as specified). This results in a
post-reproduction (and pre-mortality) population size of five times the capacity of
the system. Newly generated offspring are dispersed away from their mother by
adjusting both the x and y coordinate of their mother by a draw from a normal

distribution with a mean of zero and a standard deviation of 2x- /%. This results in

a distance that is twice the radius of the foraging area of the species, and was
chosen such that offspring have a good chance to not compete strongly with their
mother (and do not compete at all if they disperse more than one standard
deviation away). After reproduction, competition for resources occurs. This is
implemented differently in each model, as described below.

I. Standard Spatial Models



There are several functions that are commonly used to determine the
interaction strength between individuals in a spatial model (Figure X). The
simplest is a “fixed strength” interaction function: all individuals within range
interact at strength 1 (100%). Individuals at the maximum interaction range
compete as intensely as individuals who are right next to one another, which
makes this function undesirable for simulating competition for resources and can
lead to unrealistic clustering. However, this function is the most rapid to evaluate.
A second option is a “linear” function: two individuals in the exact same location
interact at strength 1, with interaction strength linearly declining to O at the
maximum interaction distance. Another option is a “Gaussian” function, in which
two individuals in the same location interact at strength 1, with strength declining
according to:
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with distance as a fraction of the maximum interaction distance and where s is a
parameter which determines how quickly interaction strength decays as distance

increases.

Each of these three interaction kernels is presented as a separate model in
this manuscript. For the Gaussian interaction, a ¢ of 1/3 of the maximum
interaction distance was used such that the interaction strength declines to a
suitably negligible value (of 0.011) at the maximum interaction distance.

An additional function that could be used for calculating interaction
strength is the less frequently used “circular intersection” interaction function.
This function treats each individual as foraging from a circular area, with the
interaction strength between two individuals equal to the portion of their foraging
areas that intersects (Figures X and 1, panels a and d). The radius of the foraging
area in this function is half of the maximum interaction range. The resulting
function has a strength of 1 for individuals who are in the exact same location, with
strength decreasing to O at the maximum interaction range, as described by:
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with distance as a fraction of the maximum interaction distance. This function is
not commonly used in spatial population models (and was not implemented in the
population models used in this manuscript), likely due to the amount of
computation required. However, it is a nicely continuous function based on
biologically plausible assumptions, and is presented here as a useful point of
comparison with the resourced-explicit models.

Figure X. Interaction
functions. Individuals within
a continuous space model
interact with one another
according to an interaction
strength funetion. A number
of potential function choices
are depicted.
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II. Resource-Explicit Models

The resource-explicit models are analogous the “circular intersection”
interaction function, as individuals in these models are considered to forage from
an approximately circular area. At the outset of the simulation, the simulated area
is tiled with resource nodes. These nodes are placed according to a hexagonal
tiling of the modeled area. The dimensions of the hexagons are determined by the
desired granularity of the tiling relative to the foraging area of the modeled species.
In the models presented below, the granularity of the tiling is chosen such that the



area of one hexagon is 1/37 of a unit area (with the exception of variants where one
hexagon is 1/19 of a unit area). Two individuals in the exact same location forage
from the same resource nodes, and could thus be considered to have an interaction
strength of 1, with interaction strength decreasing as further apart individuals
share fewer resource nodes.

The value 37 is chosen from the sequence of “hexagonal numbers” and
represents an area consisting of a central hexagon and all other hexagons within
three “steps” (similarly, 19 represents a central hexagon and all others within two
steps). Although the hexagons in the model are considered to have an “area” and
are depicted as having edges, the actual resource node entities in the model
consist of single-point entities located at the center-points of the hexagonal grid.
Resource nodes are then assigned a value representing the amount of resources
available at that node as determined by the density parameter. E.g., if the focal
species has a density of 37 individuals per unit area, then the number of resources
available at each node is 1.

See the Supplemental Methods for a detailed description of the construction
of the grid, along with the rationale for choosing a hexagonal tiling. In the SLiM
models assessed in this manuscript, the resource node entities are implemented
as a second species for which no life cycle is defined (i.e., no mobility, mortality, or
reproduction) which spatially interacts with the focal species. Similar
implementations are possible within other modeling frameworks or in
from-scratch models that allow for inter-species interactions.
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Figure 1. Visualization of resource-explicit interaction functions. Panels a, b, and ¢ show the
interaction strength between two individuals (“blue” and “green”), as determined by the portion of
the foraging area of the two individuals that overlaps. The foraging areas of the two individuals are
represented by blue and green shading; the shared area is shaded orange. Panel a: a circular
intersection function; b: the elastic resource-explicit model wherein each individual forages from
the nearest 37 nodes (rays are drawn between the focal individual and the nodes they forage at); c:
the inelastic resource-explicit model wherein each individual forages from resource nodes within
their foraging radius. In the inelastic model, the overlapping area is smaller by one resource node,
which lies just outside of green’s foraging radius (because of green’s exact position, green can only
access 36 nodes in the inelastic model). That resource node is, nonetheless, one of the 37 closest
nodes to green, which is why green forages from that node in the elastic model. Panels d, e, and f
show the interaction dynamics when blue is in the corner of the modeled area. Panel d1 shows the
circular intersection function under the assumption of the modeled species having an elastic range;
panel d2 shows the same under the assumption of an inelastic range; panels e and f show the elastic
and inelastic implementations of the resource-explicit model.

II.A. Models with an Elastic Foraging Area
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In the elastic models (Figure 1, panels b and e), individuals forage from the
nearest 37 resource nodes, though only from nodes that are within radius, R, with R
being chosen as larger than the radius of the foraging area, r. Individuals near the
edges of the modeled area are thus able to forage from further away than an inland
individual would, resulting in an elastic foraging area. R can be chosen as only
somewhat larger than r, producing slightly elastic ranges, or can be chosen as
much larger than r, resulting in fully elastic ranges in which individuals always
have access to a full 37 resource nodes. Models in this manuscript use an R of 2 xr,
which is sufficient for fully elastic ranges given a square shaped landscape. The
nearest 37 resource nodes are chosen from a continuous spatial interaction based
on the individual’s exact position — thus, two individuals in different locations
within the same hexagon may forage from a different set of nodes (though most of
the nodes foraged at by two such individuals will overlap).

In this model, competition is determined as follows. First, each individual is
iterated through, and the nearest 37 resource nodes to each are recorded. In the
process, every time a resource node is recorded, a variable belonging to the node
that tracks “demand” is incremented by 1. After this, individuals are iterated
through once again. During the second iteration, each individual receives
resources from each of their nodes according to the amount at the node divided by
the demand on that node. After receiving resources, individuals are assigned a
likelihood of survival equal to the amount received.

E.g., if each resource node has enough resources for 1 individual, and the
population size is five times the capacity of the system, then each of the 37
resource nodes provides an average of 1/(37 x 5), resulting an average survival rate
of 1/5.

In addition to this default implementation, we include three additional
variants. Any combination of the changes in these variants could be included in a
single model if desirable.
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Non-migratory variant. An improvement in runtime can be achieved in a model
in which individuals only disperse a single time (an initial dispersal of offspring
from their parents) by finding the nearest resource nodes to each individual only a
single time, and then caching and reusing this information. Individuals do not
disperse in any of the models presented here (beyond their initial dispersal), but
this optimization has not been made in the default model in order to provide an
accurate reflection of the runtime that could be expected in a model where
individuals move during each tick. This optimization is not relevant in a model
with non-overlapping generations, as the cached locations would never be used.

Preferential-foraging variant. In this version of the model, individuals
preferentially forage from resource nodes at which fewer competitors are present.
If all resource nodes are crowded, this has basically no effect. However, if the
landscape has not been fully exploited, preferential foraging may prove relevant.
For example, if an invasive species is spreading across a newly invaded landscape,
individuals at the forefront of the invading wave can fully meet their needs by
using the unexploited resources in front of the wave, and thus do not compete with
individuals immediately behind them (even if their foraging ranges overlap); those
individuals in turn can forage from the relatively underutilized areas at the front of
the wave, and so on. The result is less “back-pressure” on the wave, potentially
resulting in a faster spread across the landscape.

Nineteen hexagon variant. In this version of the elastic model, individuals only
forage from the nearest 19 nodes. Accordingly, the landscape is tiled more loosely,
such that the area of 19 nodes is equal to one unit area.

I1.B. Models with an Inelastic Foraging Area

In the inelastic models (Figure 1, panels c and f), individuals forage from any
resource nodes that are within their foraging radius (i.e., within a circle of one unit
area). Unlike in the elastic model, individuals are not guaranteed access to a full 37
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resource nodes. Individuals in the corners of the simulation might have access to
only about a quarter this many. Even inland individuals, depending on their exact
spatial position within the grid, may have access to somewhat more or somewhat

fewer resource nodes.

Competition in the elastic model is calculated by first iterating through each
resource node. Each node counts local demand as the number of individuals
within r distance and then sends each such individual an amount of resources
equal to the amount available at that node divided by the local demand. Then,
individuals are assigned a likelihood of survival equal to the amount of resources
received.

Thus, the number of nodes in range of an individual directly impacts that
individual’s survival rate. Individuals near the edge of the area are near fewer
nodes, though those nodes are likely to be used by fewer individuals, which may
result in only small net effects. Inland individuals in range of fewer nodes have
proportionately lower rates of survival, and individuals in range of more nodes
have proportionately higher rates of survival.

In addition to this default implementation, we include three additional
variants. As with the elastic model, these variants are compatible with one another,
and could be combined if desired.

Fair variant. This version of the model corrects for the spatial unfairness of the
inelastic model such that the survival rate of an individual should be unimpacted
by having access to more or fewer resource nodes. This is achieved by performing
a preliminary iteration through the nodes and incrementing a variable for each
individual that tracks the number of nodes foraged from, n. The amount of
resources each individual receives from each resource node is determined in a
second iteration through the resource nodes. The amount received from a resource
node by an individual i, where fis the amount of resources available at the node
and Cis the set of all individuals receiving resources from the node (the

“customers”) is given as:

13



f
in

received = —
Dy

J

This variant could be seen as tracking the amount of time or energy
individuals spend at each of the resource nodes within their foraging range.
Individuals with fewer nodes in range compete more intensely at those nodes,
while individuals with more than 37 nodes within range draw proportionately less
from those nodes.

Variant with a spatial approximation for reproduction. This variant replaces the
mate-search interaction with a spatial approximation that uses the resource node
entities, thus replacing all interactions between members of the focal species with
interactions between individuals and resource nodes. Before reproduction takes
place, each node caches a list of males who are within reproduction distance. Then,
rather than females directly searching for and choosing a nearby male, they
instead select a mate from the list of males cached at the nearest resource node.

This spatial approximation means that all females within a given hexagon
have access to the same list of potential mates, regardless of the female’s position
within a hexagon. However, due to the fairly granular tiling of the area, the spatial
approximation is not large. With 37 nodes per unit area, the nearest resource node
is guaranteed to be within 1/5 of the radius of the foraging area (or about 1/4 with
19 nodes per unit area). E.g., if the modeled species has a foraging area of 1
hectare, the nearest resource node to an individual is guaranteed to be within 10.2
meters (and is usually much closer).

Nineteen hexagon variant. As with the elastic model, this implementation differs
from the default inelastic model only in that the landscape is tiled more loosely,
such that the area of 19 nodes is equal to one unit area.

III. Panmictic Model
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In order to provide a baseline understanding of what portion of the runtime
of the other models is spent performing spatial computations versus other
necessary functions (e.g., offspring generation), a panmictic version of the
simulation was also implemented. In the panmictic model, a global survival rate is
imposed, which is calculated as the capacity of the system divided by the current
population. Instead of choosing a nearby mate, females in the panmictic model
randomly sample a male from the population. Other than these changes, and
individuals not being assigned spatial coordinates, the panmictic model is
identical to the other models.

REsuLTS
I. Dynamics of the Resource-Explicit Models

The resource-explicit models take place in a continuous spatial framework
but replace direct interactions between individuals by instead having the
individuals compete for resources at discretized nodes that are tiled across the
landscape. The resultant indirect interaction function differs from commonly used
interaction functions in a number of qualitative ways. First, the indirect interaction
is a discontinuous function. Two individuals who are right next to one another
share 37 of 37 nodes, and thus could be considered to interact with a strength of 1.
As the distance between the two individuals increases, the number of shared nodes
decreases, resulting in the interaction strength decreasing in increments of 1/37.
Second, the indirect function is not perfectly radially symmetric: given a fixed
position of a focal individual and a fixed distance between two individuals, the
strength of the interaction may vary slightly depending on the angle between the
two individuals. Finally, the strength of the indirect interaction is also dependent
on the precise location of individuals within the hexagonal grid: given a fixed
distance and angle between two individuals, the strength of the interaction may
vary slightly depending on their coordinates.
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Figure 2. Visualization of the indirect interaction between individuals competing for resources.
These panels depict the shape of the interaction and the interaction strength between a focal
individual (located in the center of the depicted hexagon) and a competitor in any other spatial
position within a grid of 1000 by 1000 points for the elastic (panel a) and inelastic (panel b) model.
Panels ¢ and d depict the comparison between the circle overlap function and the interaction
strength in the resource-explicit functions as between individuals in every possible direction. The
cyan line overlaid on panels a and b is shown as a specific example trajectory on panels c and d.

However, despite these seemingly quite substantial qualitative differences, a
guantitative assessment reveals that the resource-explicit models are a very close
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match to the circular intersection function which they seek to emulate. To evaluate
the functions and measure the differences between them, an approximately
square area consisting of 418 hexagons was subdivided into heatmap grid with
about 1000 by 1000 points. For each function, interaction strength was measured
between a focal individual located in a central hexagon and every other point in the
grid (Figure 2). The average difference between two functions was calculated by
measuring the absolute value of the difference between the two functions as
evaluated at each point where at least one of the functions had a non-zero value.
This average difference was recalculated with the focal individual located in every
point in the heatmap that fell within the central hexagon, totaling 2543 points, and
the resulting 2543 average differences were then averaged again to give an average
interaction strength as averaged across all possible coordinates.

For the elastic model with 37 nodes per unit area, when the focal individual
was located at the exact center point of the hexagon, the average absolute
difference between the resource-explicit interaction and the circular intersection
interaction was 0.0128 (Figure 2, panels a and ¢, Supplemental Figure 1, panel a).
The average absolute difference as averaged across all 2543 focal points within the
central hexagon was 0.0170. At the difference maximizing point, the average
absolute difference was 0.0239 (Supplemental Figure 1, panel c).

For the inelastic model with 37 nodes per unit area, the average absolute
difference between the resource-explicit interaction and the circular intersection
interaction given a focal individual in the center of a hexagon was 0.0138 (Figure 2,
panels b and d, Supplemental Figure 1, panel b). The average absolute difference
as averaged across 2543 points was 0.0185. At the difference maximizing point,
the average absolute difference was 0.0253 (Supplemental Figure 1, panel d).

See the Supplemental Results for similar measurements for the models with

19 hexagons per unit area.

Unequal Resource Availability in the Inelastic Model. In the inelastic
implementation of the model, individuals are not guaranteed to forage from
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exactly 37 nodes. Depending on their position within the array of nodes, they may
forage from as few as 35 and as many as 40 nodes (Supplemental Figures 3 and 4),
not including individuals near the edge of the model who tend to forage from
substantially fewer. Except in the “fair” variant of the model, foraging from fewer
nodes directly corresponds with a higher mortality rate, while foraging from more
corresponds with a lower mortality rate. This gradient in the mortality rate
between individuals does not impact the average mortality of the system as a
whole, as the average number of individuals who survive the mortality phase of the
model is still dependent on the amount of resources available across the
landscape.

The degree to which an unequal mortality rate could be considered
undesirable likely depends on the system being modeled. The tessellation of
varying resource node availability is repeated in each hexagon of the model, and
thus by definition has a very small spatial scale compared to the range of the focal
species. For most species, it can likely be assumed that individuals disperse at
least as far as they travel to forage. Given the large difference in spatial scales
between the pattern of resource node availability and dispersal, the number of
resource nodes available to an individual given their exact coordinate in the grid
could be considered an entirely random property. Similarly, after competition,
even though more individuals are removed from areas with access to fewer nodes
and vice-versa in areas with access to more nodes, this should not have a
measurable impact on dispersal patterns in the following generation, again given
the much larger spatial scale of dispersal compared to this repeating pattern.
Thus, the total impact of this phenomenon is that some individuals, at random,
have a higher likelihood of survival, while others, at random, have a lower
likelihood, without any change to the overall survival rate. Considering that
survival is already stochastic, this should cause no noticeable change in most
circumstances. However, this phenomenon may be more of an issue in very sparse
populations with small litter sizes. For such cases, the “fair” variant may be
considered desirable. In the fair variant, the unequal resource node availability is
counteracted such that mortality rates are not affected.
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Edge Effects in the Resource-Explicit Models. The dynamics at the edge of the
modeled area in the resource-explicit models are not completely identical to those
in the interior of the model. When offspring are dispersed away from parents
located near the edge of the area, those offspring have a smaller area into which
they can disperse, since they cannot disperse off the edge of the area. Thus, before
mortality is imposed, density tends to be higher near the edge of the area, leading
to an accompanying increase in mortality rates, despite local capacity near the
edge of the model being equal to local capacity in further inland areas. This could
be considered realistic, depending on the species under investigation. As an
alternative, a larger dispersal distance could be used for individuals near coastal
areas, as such individuals might invest extra effort to avoid this type of clustering.

In the inelastic implementation, though not quantitatively assessed, a
slightly reduced density was observed near the very edges of the simulated area.
This is likely due competitive pressure from inland individuals on coastal
individuals. Since individuals near the edge of the model have access to very few
resource nodes, they are less likely to survive than the slightly further inland
individuals who can forage from the coastal nodes but also from further inland
nodes. This was not observed in the “fair” variant of the inelastic model, since
coastal individuals in that variant who forage from fewer nodes have a
commensurate increase in the amount of resources they receive from those nodes.

Wave Advance Speed in the Resource-Explicit Models. In some contexts, such as
considering the spread of an invasive species, it can be important to measure the
rate at which a population can spread into an unoccupied habitat. In one of the
resource-explicit models, individuals forage preferentially from resource nodes
that are less crowded, which was expected to potentially increase the speed at
which a wave could spread across the landscape.

To assess potential differences in wave speed between the models, a series
of simulations was performed in which a population of individuals with varying
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density and litter size parameters was released at one end of a rectangular area,
and the time required for the population to spread across the landscape was
recorded (see Supplemental Results). With most parameters, the wave advance
speed of all of the models was indistinguishable, as the advancing wave was able to
fully exploit the landscape, with the population able to spread to the full extent that
migration would allow during each tick. Only when the density and litter size
parameters were very low did differences in the models appear. At low density and
small litter sizes, the wave advance speed of the preferential foraging model was
fastest. Second fastest was the standard model with a fixed strength interaction
function. All of the other models were slightly slower still (Supplemental Figure 5).
The differences between the models were not extreme, but differences of this
nature may be worth consideration in some systems.

II. Computational Performance of the Resource-Explicit Models

To assess the runtime performance of each of the models, a series of
simulations with a varying landscape size was run at three different densities — a
low density (20 individuals per unit area), a medium density (100 individuals per
unit area), and a high density (200 individuals per unit area). For each density, the
landscape size was varied such that population size after reproduction and before
mortality (i.e., the number of individuals involved in the spatial interaction
calculating competition) was increased in increments of 1 million, up to a
maximum of 10 million individuals. The time elapsed during each tick was
recorded, starting with the third tick in order to allow the simulation time to
equilibrate. Simulations were performed on a desktop computer using an Intel
19-9900K processor, on which only a single simulation was performed at a time in
order to keep conditions across simulations as equal as possible.
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Figure 4. Runtime comparison across model types. A series of simulations with a varying
landscape size was run at three different densities (20, 100 and 200 individuals per unit area) with
the size of the landscape increasing such that the population size (after reproduction and before
mortality) increased in steps of 1 million. After the model equilibrated for 3 ticks, the runtime
duration of the next ten ticks was recorded and averaged. Note that figures 4-6 have different y-axis
scales.

An initial comparison between the default implementations of the resource
explicit models and the standard spatial model reveals an increase in runtime
speed across all population sizes at all densities (Figure 4). This is in spite of the
standard spatial model using a fixed strength interaction, the fastest of the
standard spatial functions (though the linear function is only slightly slower;

Supplemental Figure 6).

A comparison between the variants of the elastic model (Figure 5) shows that
the implementation with preferential foraging is by far the slowest of the
resource-explicit models. This model’s purpose is to add a novel capability, rather
than being intended as a runtime optimization, so this is not unexpected. This
version of the elastic model is the only resource-explicit model that runs more
slowly than any of the standard spatial models (though it only ran more slowly at
low density). The optimization for populations where migration is only performed
by newborn offspring represents a small runtime improvement over the default
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elastic model. This optimization would certainly yield more improvement in a
model with longer lived individuals — individuals in this model only had a survival
rate of 20% per tick, and the caching of spatial information only saves time when
individuals actually survive to the next tick to use that data. The implementation
with 19 nodes per unit area cuts the runtime by even more, though this
implementation represents somewhat more of a spatial approximation compared
to the default 37 nodes (see the Supplemental Results). The runtimes of the elastic
models are almost unaffected by the density of the population, unlike the standard

spatial models, which are highly sensitive to increases in density.
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Figure 5. Runtime comparison of elastic models. A series of simulations with a varying landscape
size was run at three different densities (20, 100 and 200 individuals per unit area) with the size of
the landscape increasing such that the population size (after reproduction and before mortality)
increased in steps of 1 million. Note that figures 4-6 have different y-axis scales.

The inelastic models, across all variations, perform extremely quickly
(Figure 6). Even the “fair” variant, which is slower than the other inelastic models,
performs faster than any of the elastic models. In general, the inelastic models
slowed down very slightly as density increased. However, the variant using a
spatial approximation for reproduction showed a reverse trend, and was faster at
medium density than at low density, and was approximately as fast at high density
as at medium density. The variant with 19 nodes per unit area is the fastest of the
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spatial models, achieving the notable feat of requiring only about 5 times as much
runtime as the panmictic model.
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Figure 6. Runtime comparison of inelastic models. A series of simulations with a varying
landscape size was run at three different densities (20, 100 and 200 individuals per unit area) with
the size of the landscape increasing such that the population size (after reproduction and before
mortality) increased in steps of 1 million. Note that figures 4-6 have different y-axis scales.

An additional set of simulations was used to continue exploring the
relationship between density and runtime in the default implementations of the
elastic and inelastic model versus the standard spatial model (Figure 7). When
modeling higher density populations, given a certain population capacity, there are
fewer resource nodes (each of which distributes a greater amount of resources).
This offsets the reduced efficiency of the spatial data structure at higher densities
(indeed, density within the data structure is no longer dependent on the density of
the population). At high densities, the elastic model had performance of up to
about 8 times faster than the standard spatial model, while the inelastic model
performed up to 20 times as faster. At decreasing densities, the resource-explicit
models are eventually outperformed by the standard spatial model. The elastic
model performs more slowly than the standard spatial model at densities below
about 19 individuals per unit area, while the inelastic model is slower only when
the density is below about 7 individuals per unit area. Note that the actual density
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of individuals taking part in the spatial interaction is five times greater due to this
being a mortality regulated population rather than a fecundity regulated
population: each female has a full litter with an average size of 8, and the
population is then regulated back to its capacity size. Thus, it can be anticipated
that in a fecundity regulated model, the resource-explicit models would perform
more slowly than the standard spatial model at densities under about 95
individuals per unit area for the elastic model and 35 for the inelastic model.
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One potential drawback of the resource-explicit models is that they require
more memory than standard spatial models, as the resource node entities
represent a large array of objects that must be accounted for. In a simulation with a

24



density of 100 individuals per unit area and an area of 2000 (resulting in a
post-reproduction population size of one million individuals), the standard models
had an average of 540 Mb peak memory usage. The elastic models required
substantially more, with a 1650 Mb peak usage for most variants (slightly less for
the variant with 19 hexagons per unit area), while the inelastic models required
only somewhat more than the standard spatial models.

The panmictic model serves to give a baseline understanding how much of
the runtime of the various other models is spent doing work unrelated to spatial
interactions (Fig 6). However, this should also serve as a caveat to the rest of the
results: as the runtime of the panmictic model demonstrates, very little is going on
in these models other than spatial interactions. But in models with a complex
genetic component, spatial calculations may occupy a substantially smaller
portion of the overall runtime of the model. For such models, switching to a
resource-explicit modeling approach cannot be expected to yield the same relative
increases in speed observed here. Additionally, runtimes in this manuscript were
measured on a highly performant desktop CPU which was only performing a single
simulation at a time. Runtimes may be much slower on a cluster CPU performing
many other tasks in parallel. Nonetheless, the relative runtime improvements
measured in this manuscript should approximately hold in such contexts.

DiscussioN

Before consideration of the runtime improvements and other potential
advantages of the resource-explicit approach, the threshold question must be
answered: are the interaction dynamics within the model fit for purpose? We
assert that they are in the majority of contexts.

The circle overlap interaction function is inspired by the biological reality of
resource foraging behavior, and is likely as reasonable an interaction function as
any of the more commonly used functions. The magnitudes by which indirect
interaction strengths in the resource-explicit frameworks differs from this
function are quite small. While the interaction strengths are not perfectly radially
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symmetric, the small random variation in pairwise interaction strengths is
negligible within a model with so many other stochastic elements, amounting to
little more than random seafoam atop what is already a random wave.

The unequal availability of resource nodes in the inelastic model
(Supplemental Figures 3 and 4) should perhaps not be dismissed quite as readily.
In a species with a smaller population or with a lower birthrate, a model in which
individuals might occasionally perish just because they happened to step on the
wrong spot in the grid is not desirable. For such species, the elastic model or the
“fair” variant of the inelastic model should be preferred. On the other hand, for
species with large populations and high birthrates, randomly assigning some
individuals a somewhat higher mortality rate while randomly assigning others a
somewhat lower mortality rate should not disturb model outcomes.

This modeling approach could be seen as a relative of approaches used in
several other fields and which also utilize spatial approximations or discretizations
to increase performance. In computational fluid dynamics fluids are treated as a
set of discrete cells, as the simulation of individual molecules would not be
tractable for most applications'®. In computational astrophysics, the Barnes-Hut
method reduces the complexity of n-body simulations from O(n?) to O(n log n) by
approximating the interaction forces between distant objects by treating multiple
distant objects as having a single interaction force emanating from a spatial cell’s
center of mass"’.

The resource-explicit approach to modeling comes with a number of
exciting advantages and possible applications. The runtime speed of the models is
among the most exciting of these advantages. Studies involving continuous spatial
models have tended to contemplate populations of between 10000 and 100000
individuals. In addition to allowing simulations of such populations to be
conducted more quickly and efficiently, the resource-explicit approach will allow
for the simulation of hitherto impractically large populations. Many large
populations which are currently studied by applying a scaling multiplier to
mutation rates, or which are not modeled in continuous space at all, can now be

modeled in full in spatial models.
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In addition to the runtime advantages demonstrated in this manuscript,
there are a number of features that can be implemented with much greater
efficiency in a resource-explicit model than in a standard spatial model, either in
terms of implementation effort, runtime, or both. The following is an incomplete

list of such features.

Multiple classes of resources. Many species require different classes of resources
at different stages of life, or need a specific resource in order to enable
reproduction. For example, monarch butterflies can feed on nectar from many
plants, but only lay their eggs on milkweed; mosquitos feed on nectar or other
plant juices, but female mosquitos only reproduce after taking a blood meal from
their selected host, after which their eggs can only be laid in water sources. In a
resource-explicit model, resource nodes can be parameterized with a separate
value for each relevant class of resources, allowing for the simulation of complex

life histories while adding almost no computational overhead to the model.

Interspecies competition. In a standard model with multiple competing species,
an interaction function between each species and each other species must be
evaluated, in addition to an intraspecies interaction for each species. E.g., in a
model considering three competing species, A, B, and C, a total of six types of
interactions must be evaluated: three intraspecies interactions (one for each of A,
B, and C) and interspecies interactions between species A and B, between A and C,
and between B and C.

The resource-explicit modeling approach is significantly more efficient in
this context. Instead of six types of interaction, only three interactions are
necessary — the interaction between each of the three species with resource node
entities. There may be some complications in setting up such a model if the
foraging areas of the species involved have very different scales. Otherwise, each
species can be parameterized with a different foraging radius, and the exact tiling
density of the resource nodes can be selected such that the species with the
smallest foraging area has enough resource nodes within foraging range that the
interaction is as artifact-free as desired (perhaps 37 or 19 nodes per foraging area
as in this manuscript, though 7 might suffice in some modeling contexts). The
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number of hexagons corresponding to the interaction area of an individual need
not be selected from the sequence of “hexagonal numbers,” though not doing so
may result in a slight increase in spatial artifacts.

This efficiency increase only applies to the simulation of interspecies
resource competition. Other interspecies interactions, such as a predator-prey
relationship, are neither more nor less efficient in this model framework, as the

interaction between the predator and prey species must still be evaluated.

Heterogenous landscapes and irregular area boundaries. The resource-explicit
approach elegantly lends itself to the simulation of realistic heterogenous
geography. To accomplish this, nodes can simply be parameterized with different
resource amounts depending on the local habitat quality in different areas of the
model. Heterogenous landscapes can be simulated in a standard spatial model as
well, but doing so requires additional computational overhead, as each individual
must ascertain the quality of the local habitat (e.g., by referencing their position
against the color of the corresponding pixel in an image of the landscape) every
time they compete for resources. By contrast, no such additional overhead is
necessary in a resource-explicit model after the initial setup of the model.

An irregular area boundary, such as a coastline, is another feature that is
substantially easier to implement in a resource-explicit model. With an irregular
boundary, standard techniques for avoiding edge-effects cannot be applied. In a
standard spatial model, the best methods to simulate such a boundary would
probably require substantial programmer effort and pre-calculation of interaction
strength multipliers near the boundary. In resource-explicit models, no such effort
is necessary (aside from preventing individuals from dispersing into the sea,
which must be done in either type of model).

Resource variability as a function of time. Similarly, resource-explicit models are
amenable to simulating varying resource availability as a function of time, whether
in the form of periodic seasonal variation, longer term periodic or random
variation (such as tree masting, a phenomenon in which, during some years,
certain species of trees produce abnormally large crops of seeds in order to
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overwhelm foragers and ensure that some seeds go uneaten), or long-term
trajectories (such as degradation of habitat due to climate change). To accomplish
this, after each tick of the model, resource nodes can be replenished according to
an appropriate function of time, rather than being replenished to the starting
resource value of the node. Implementing this feature would not likely result in a
noticeable increase in the runtime of the model.

Focal species induced habitat change. In addition to competing for resources,
many species also have a direct impact on the landscape on which they live. For
example, many species of bacteria and yeast, such as the historically beloved
Saccharomyeces cerevisiae (brewer's yeast), ingest sugars or other organic molecules,

and excrete ethanol'®

. As the concentration of alcohol increases and the availability
of sugars decreases, the capacity of such a system decreases. Systems of this
nature are usually modeled as panmictic systems via differential equations, but
the resource-explicit modeling approach can allow for the spatial modeling of
these processes by explicitly tracking the amount of sugar and alcohol at each
resource node. While panmictic models are likely suitably descriptive of the
brewing process, there are many similar contexts where a spatial model may be

desirable (e.g., for the simulation of petri dish experiments).

Imperfect resource regeneration rate. In many natural systems, groups of
animals locally extract resources much faster than those resources can replenish
themselves. For example, herds of grazing animals might eat grass in a local area
much faster than it can grow, but the animals survive by migrating across the
landscape, leaving previously exploited resources ample time to recover. Dynamics
of this type are omitted from standard spatial models, but are quite
straightforward to implement in a resource-explicit model by simply
parameterizing resource nodes with a resource maximum along with a

regeneration rate or function.

Simulation of other landscape features. Resource availability isn’t the only
landscape feature that can have a profound impact on animal behavior. Natural
and artificial barriers, such as rivers and highways respectively, might severely
curtail migration between otherwise adjacent areas'. Dispersal behavior of
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human-commensal species may be entirely different in urban environments than
in any other context (e.g., a mouse may disperse over a kilometer in the wild, while
a mouse in a well-provisioned kitchen might be quite content to never travel more

than a room away)***'.

The resource-explicit modeling approach provides at least a basic
framework in which such features could be implemented, some more easily than
others. Implementing different dispersal characteristics in urban areas, for
example, would be quite easily accomplished by adding an additional property to
each resource node denoting the local human population density, and altering the
dispersal of individuals based on that property. To model dispersal barriers such
as roads, hexes through which such infrastructure passes could be given an
additional property, which could then impact the dispersal characteristics of

individuals within interaction range of those hexes.

Adding a large number of such features to the simulated landscape might
have undesirable consequences for model runtime. Other simulation frameworks,
such as HexSim, may be more appropriate for simulating landscape features such
as dispersal barriers if they are central to a research question®’. HexSim treats
landscapes as consisting of a grid of hexagonal cells rather than a continuous
space. However, the ranges exploited by individuals and groups within the
framework can span multiple hexes, which likely allows the avoidance of many
artifacts otherwise found in models consisting of linked panmictic cells. In this
framework, hexagon edges are an explicit part of the model, and collections of
edges can be used to define migration barriers with greater ease and with less
computational overhead than is likely necessary in a continuous space model.

There are a number of contexts in which the resource-explicit approach
might not be the preferred choice. This framework is designed to emulate
competition to exploit resources. If direct or “interference” competition is more
dispositive to system outcomes, it makes more sense to directly measure
interaction strengths between individuals by using a standard spatial framework.
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Or in systems with very low densities or small populations (particular relevant for
the modeling of endangered or threatened species), a resource-explicit model may
actually run more slowly than a standard spatial model, which might warrant the
selection of the latter (though the flexibility of the resource-explicit approach for
modeling heterogenous landscapes or interspecies competition may still make it a
preferable choice).

In the majority of modeling contexts, the resource-explicit method promises
superior runtime speeds and excellent flexibility compared to standard spatial
models. Adoption of this method will allow for the construction of
continuous-space models of populations that were previously intractably large. Not
only that, but these populations can be simulated on realistic landscapes with
realistic boundaries. The flexibility of this method will also allow for increased
realism in modeling numerous factors that impact resource availability which are

prohibitively computationally intensive to include in current models.

Data AND CODE AVAILABILITY

The SLiM code for the models presented in this paper, including each of the
variations, along with the data used in this manuscript, are available at
https://github.com/MesserLab/ResourceExplicitModels. The SLiM simulation
software used in the project is available at https://messerlab.org/slim/ or at
https://github.com/MesserLab/SLiM.
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